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Abstract grams suffers from thetate explosiomproblem. In carry-
ing out model checking on a concurrent system, the whole
We have developed a set of tools to allow the use ofstate space of the system must be represented in some way
model-checking techniques for the verification of systems— and this state space is typically enormous.
directly implemented in an agent-oriented programming A key technique used in simplifying the analysis of con-
language. The success of model checking as a verificatiorventional programs is that aficing. The basic idea behind
technique for large systems is dependent partly on its use inprogram slicing is to eliminate details of the program that
combination with various state-space reduction technéque are not relevant to the analysis in hand [10]. Thus, in our
An important example of such techniques is property-basedcase, since we wish to verify some property, the idea is to
slicing. This paper introduces an algorithm for property- eliminate parts of the program that do not affect that prop-
based slicing of AgentSpeak multi-agent systems. We aperty; this is calledproperty-based slicingAlthough slic-
ply our approach to the AgentSpeak code for a scenario in- ing techniques have been successfully used in conventional
spired by routine tasks of autonomous Mars rovers, and ex-programs to reduce the state-space required, these sfandar
plain how slicing reduces the search space in theory. Wetechniques are only partially successful when applied to
consider experiments on such scenarios, and initial result multi-agent programs. What we require are slicing tech-
show a significant reduction in the state space, thus indicat niques tailored to thagent-specifiaspects of (multi-)agent
ing that this approach can have an important impact on the programs. In short, this is what we describe in this paper:
practicality of agent verification. a new agent-based slicing algorithm and its application to
model-checking AgentSpeak.
The remainder of this paper is organised as follows. The
) next section provides a brief overview of our approach to
1. Introduction model checking agent systems. Section 3 gives the nec-
essary background on slicing for logic programming lan-
guages. We then introduce our AgentSpeak slicing algo-
rithm, give an illustrative example, and outline a proof of

verlflcatlc_)n— showing _that a system Is correct with re- correctness in Section 4. Section 5 discusses a case study
spect to its stated requirements — becomes even stronger .\ .. 2 tonomous Mars rover scenario

We have developed model checking techniques and tools

for verifying systems implemented in AgentSpeak(L) [4, 2]. .

The AgentSpeak(L) BDI logic programming language was 2- Model Checking AgentSpeak

created by Rao [7], and is one of the few languages for pro- ] ) _
gramming ‘intelligent’ multi-agent systems. While we have A first key step in our research was to restrict
developed these tools, based on translating AgentSpeak(Lf:\@entSpeak(L) to finite state systems: AgentSpeak(F), a
programs into either Java (for use with the JPF model .Inlte state version of AgentSpeak_(L), was first descrlibed
checker) or Promela (the input language for the SPIN modelin [2]. The idea is to translate multi-agent systems defined

checker), practical experience has shown that, as with conJn this language into the input language of existing model
ventional programs, the verification of multi-agent pro- checkers, so that we can take advantage of the extensive

range of tools for model checking that are available.
+  Work at Liverpool supported by an EC Marie Curie Fellowshigler . An AgentSpeak agean) .IS clreated by the speC|f|ca_1-
contract number HPMF-CT-2001-00065. tion of a set of beliefss), which is a set of ground predi-
t Currently at the Department of Computer Science, Universtt cates, and a set of plangs]. AgentSpeak(L) distinguishes
Durham, DH1 3LE, UK. E-mailR Bor di ni @lur ham ac. uk. two types of goalsg): achievement goalandtest goals

As multi-agent systems come to be used in increasingly crit-
ical applications, the need to provide tools supportingrthe




AgentSpeak(F) formula). At this stage, only three illocu-

ag = bs ps tionary forces can be usetkll, untell, andachieve (un-

bs == aly . aty (n>0) ) .
_ less others are defined by the user). They have the same in-

at = P(t, ytn) (n>0) ; ;

s . (n>1) formal semantics as in the well-known KQML agent com-
b _ ‘fel ) ct< Z" = munication language. Other predefined internal actions are
fe B +a't |- Iat L +g | -g used for printing messages, and conditional and arithmetic
ot — true | L&.. &L (n>1) operations, for example.

h = true | fi; i I (n>1) The main difference between AgentSpeak(F) and
l = at | not ( at) AgentSpeak(L) is that first order terms are disallowed.
fou= Altr, ...vty) | g | u (n>0) Other restrictions, which apply particularly when model
g == lat |  ?at checking is to be done with SPIN, are described in [2]. A
w = +at |  -at multi-agent system is specified by the user as a collection

of AgentSpeak(F) source files, one for each agent in the
system. Various functions that are part of the interpretati
of AgentSpeak(L) agents can be customised. Also, the user

Achievement goals are predicates (as for beliefs) prefixedhas to provide the environment in which the agents will be
with the ‘1 * operator, while test goals are prefixed with the Situated; this is written in the input language of the model
‘2'operator. Achievement goals state that the agent wantschecker itself, rather than AgentSpeak(F).
to achieve a state of the world where the associated pred- |n the context of verifying multi-agent systems imple-
icate is true. Atest goalstates that the agent wants to test mented in AgentSpeak, the most appropriate way of spec-
whether the associated predicate is one of its beliefSgA  ifying the properties that the system satisfies (or does not
gering even(te) defines which events may initiate the ex- Satisfy) is by expressing them using a tempora| |0gic com-
ecution of plans. There are two types of triggering events: hined with modalities for referring to agent's mental atti-
those related to theddition(‘ +’) anddeletion(*- ) of men-  tydes, in particular BDI logics [12, 8]. Such logics fornsali
tal attitudes (beliefs or goals). the main concepts of the underlying BDI architecture used
An AgentSpeak planp) has ahead(the expression to  in reactive planning systems such as AgentSpeak agents.
the left of the arrow), which is formed from a triggering A way of interpreting the informational, motivational, and
event (denoting the purpose of that plan), and a conjunctiongeliberative modalities of BDI logics for AgentSpeak(L)
of belief literals () representing &ontext(ct). The con-  agents was given in [3] based on the operational seman-
junction of literals in the context must be a logical conse- tics of AgentSpeak(L). In the present work, we use this
quence of that agent’s current beliefs if the plan is to be ex- framework for interpreting the BDI modalities in terms of
ecuted. A plan also hastedy(h), which is a sequence of  data structures within the model of an AgentSpeak(F) agent
basic actions or (sub)goals that the agent has to achieve (ogiven in the model checker’s input language. This way, we
test) when the plan is triggered. Plan bodies are sequencegan translate (temporal) BDI properties into LTL formulze.
of goals, belief updates}, orbasic actionghat an agentis

able to perform on its environment. Such actions are also The logical property specification language for our

- . - : . del-checking approach is defined next. It is a simplified
defined as predicates, but with special predicate symbolsmo : Lo .
(calledaction symbolsused to distinguish them. version of COR.A [12], which is based on modal logics of

The grammar in Figure 1 gives the concrete syntax of intentionality, dynamic logic, and CTL*. In the version of

; the logic used here, we limit the underlying temporal logics
AgentSpeak(F). In the grammd,stands for any predicate .
symbol,A for action symbols, and ternts are either con- to LTL rather than CTL*, given that LTL formulae (exclud-

stants or variables. As in Prolog, uppercase initial lstéee ing the “next” operato()) can be automatically processed

used for variables, and lowercase for constants and predi-by our target modeI?checkers: The main restriction of the
cate symbols (cf., Prolog atoms). Note that first order termslanguage used herglm comparlsom:(GRA_ Is that theB.eI,

(cf., Prolog structures) are not allowed in the present ver- Des, ar_1d|nt modalltles can onl_y be applied to atomic for-
sion of AgentSpeak(F). mulae (i.e., predicates as used in AgentSpeak).

There are also some predefiriaternal actionsymbols, Let pe be any valid boolean expression in the model
which are indicated by an initial ‘.’ character. The action specification language of the model checker being used,
‘.send’ is used for speech-act based inter-agent communi-be any agent labet, be a variable ranging over agent labels,
cation, and is interpreted as follows. If an AgentSpeak(F) andat anda be atomic and action formulae defined in the
agentl; executessend(ls, ilf , at), a message will be in-  AgentSpeak(F) syntax (see Figure 1), except with no vari-
serted in the mailbox of agely, havingl; as sender, illo-  ables allowed. Then the set of well-formed formulsdf |
cutionary forceilf , and propositional content (an atomic of this language is defined inductively as follows:

Figure 1. Concrete Syntax of AgentSpeak(F).




1. pe is awff; work, but refine the program representation to have annota-
2. at is awff; tions on dependence at the level of arguments rather liter-
3. (Bell at), (Des 1 at), and(Int [ at) arewff; als.

4. V. (M z at) and3z.(M =z at) arewff, whereM ¢ Slicing in the context of those authors is intended for de-
{Bel, Des, Int} andx ranges over a finite set of agent bugging, software maintenance and understanding, and so
labels; on. Therefore, the more details of a program can be elim-

5. (Does a) is awff; inated, the better. For our present purposes, Zhao's early

6. if p andy arewff, so are(—p), (P A1), (PVY), (¢ = work suffices, as we do not need slicing at the level of ar-
V), (¢ & ), always(Oyp), eventually(Oy), until guments. Instead of a slice for a particular variable, aalusu
(p U ¢), and “release”, the dual of untilp R +); in software engineering approaches, we here aim at remov-

7. nothing else is aff. ing plans (whole clauses) based on their influence on the

In the syntax above, agent labels denotedbgnd over truth of a predicate (rather than variable) that appears in a

which variable z ranges, are the ones associated with property specification (under certain modalities).

each AgentSpeak(F) program during the translation pro- 1h€ approach of Schoenirgg al. works for Prolog pro-
cess. That is, the labels given as input to the translatord9r@ms. Although AgentSpeak is similar to Prolog in many
form the finite set of agent labels over which the quan- rgspects, which would indicate that we might base our algo-
tifiers are defined. The only unusual operator in this lan- rithm on [9], an AgentSpeak pla_n_has the exact same struc-
guage is(Does ! a), which holds if the agent denoted by ture of a gl_Jarded_c_Iause. The slicing algorithm propos_ed by
has requested actianand that is the next action to be ex- Zhaoet al.is specific to Guarded Horn Clauses, so their ap-
ecuted by the environment. An AgentSpeak(F) atomic for- proach is a better candidate as a basis for ours. Besides, we
mulaat is used to refer to what is actually true of the en- d0 not need to generagaecutable sliceghe main motiva-
vironment (rather than from the point of view, i.e., belief, tionin [9]), as we are only interested in preserving thettrut

of an agent). The concrete syntax used in the system forOf particular properties of the system. _

writing formulee of the language above is also dependenton  For these reasons, we chose to use the technique by Zhao
the underlying model checker. Before we pass the LTL for- €t al. presented in [13] as a basis for our slicing algorithm
mula on to the model checker, we translB&, Des, and for AgentSpeak. Note that their work is intended for con-
Int formulee into predicates accessing the AgentSpeak(F)current logic programs, where body literals are AND pro-
data structures modelled in the model checker’s input lan-cesses, different clauses of a procedure are OR processes,
guage. This is done in accordance with the definitions givenshared variables relate to process communication and syn-

in [3]. chronisation, etc. However, all such dependencies apply to
any logic program, as Zhast al. observe themselves [13].
3. Slicing Logic Programs Although we are not dealing with concurrent logic pro-

grams of this kind, the reader may consider the terms used

Perhaps the closest existing work to our goal of program in their algorithm (such as “communication dependencies”)
slicing for AgentSpeak is that on slicing for logic pro- &S metaphors to dependencies which must be dealt with in
grams, and so we here provide a brief introduction to pre- Slicing any logic program (thus in our case too).

vious work in this area. In one of the earliest papers on  Below, we summarise the approach presented in [13],
slicing logic programs, Zhao, Cheng, and Ushijima presentWhich will be used in the algorithm we introduce in Sec-
a graph-theoretic representation of a concurrent logie pro tion 4. Itis heavily based on two representations of a logic
gram, which can be used for slicing [13]. An arc-classified program. The first, called\nd/Or Parallel Control-Flow
digraph calledLiteral Dependence Net used to repre- Net (CFN), is an arc-classified digraph (directed graph)
sent four types of dependencies of concurrent logic pro-where control-flow dependencies are annotated. The sec-
grams: control, data, synchronisation, and communicationond is calledDefinition-Use Ne{DUN), and contains an-
dependencies. Subsequently, a backward slicing algorithmnotations on data dependencies.

for Prolog was presented by Schoenig and Ducassé in [9] In a CFN, vertices are used to represent the heads,
which is able to carry out slicing with greater precisionttha guards, and each literal in the bodies of the clauses in
the approach in [13]. In [9], slicing is done at the level of the program. Execution arcs (both AND-parallel and OR-
arguments of predicates, so slices are subsets of the slausearallel) as well as sequential control arcs are used to de-
of the original programs where also some predicate argu-note control flow information. The generation of such CFN
ments may have been replaced by “anonymous variables”can be understood informally from the rules presented in
More recently, Zhao, Cheng, and Ushijima extended their Figure 2. Note that, as we will be dealing with slicing sets
approach, using what they call an Argument Dependenceof AgentSpeak plans (each plan having the same structure
Net [14]. They use the same principles as in their previous of a guarded clause), we have not reproduced here the rules



and the body literals, or between body literals that shaye lo
pi-g | gl a2 ..., an. ical variables. Similarlygommunicatiotin concurrent logic
‘ programming captures data dependences between literals in
Pi-gla  pi-olp different clauses. The definition afteral Dependence Net
i i (LDN) is then an arc-classified digraph containing all four
@ @‘ types of dependencies mentioned above (control, data, syn-
O @

chronisation, and communication).
3 A static slicing criteriais defined in [13] as a paifl, V),
@ @ W -G wherel is a literal in the program antl is a set of vari-
v i

| | | ables that appear ih The static sliceSS(l,V) of a logic
program given a static slicing criteriaf, 1) is the set of

06

(a) iterative Clause (b) General Clause all literals in that program which possibly affect the execu
tion of [ and/or affect the values with which variableslin
I M pure are instantiated. Interestingly, once the LDN of a logic-pro
p :- 92 | 921, 922, ..., 92m. AND-parallel execution arc

gram is built, a static slice can be determined simply by
solving a reachability problem in the LDN arc-classified di-

p :-on | anl, gn2, ..., gom.

@ scqucxx[iul;nlrn]urc graph.
> f > 4. Slicing AgentSpeak
In our approach, the system to be sliced is given by a set

' ' ' ' ' ' ' ' ' of AgentSpeak programs, one for each agent, and an ab-

stract representation of the environment, stating whictsfa

about the environment (which may then become agents’ be-
liefs through perception of the environment) are changed,
either by the agents’ actions or spontaneously, in case of
dynamic environments. The environment is thus abstractly
represented by a set of rules with one action in the left-hand

given in [13] for unit clauses and goal clauses, as these are . . . .
not relevant for presenting our slicing algorithm. side and a sequence of possible belief changes in the form

. of addition or deletion of predicates. In case of dynamic en-
As noted above, we also need to annotate a logic pro-

. _ vironments, rules can have empty left-hand sides. The envi-
gram (based on the approach used in concurrent logic pro

X ith dat hronisati d i ‘ronment also has a set of facts (in Prolog terminology) rep-
gramming) with data, synchronisation and communication resenting what is initially true of the environment.

dependences among literals. For this, another structure is . .
T ' Besides the system components, the property for which
needed, the so called definition-use net (DUN). Its defi- : . : .
a slice will be obtained (and will later be used for model

nition requires four functionsD determines the variables : . i -
) . . checking) also needs to be given. This is specified in the re-
definedat each vertexi/ determines the variablesedat ; : . : ; .
each vertexS determines the set of channel variabdest strlgted '.‘D’DI logic (_je_fmed in Section 2. The input to the al-
gorithm is thus a finite set of AgentSpeak progra#nghe

at each vertex, an® determines the set of channel vari- . .
) . abstract environmerf, and the property? for which the
ablesreceivedat each vertex. Function3 andU are deter- . . .. . .
slice is to be obtained. The slicing algorithm then works in

mined bymode inferenc€Zhaoet al, in their later work, .

. ) . . three stages, as described below.
use the approach proposed in [5]); mode inference for logi-
cal variables is done by abstract interpretation. Stage| At this stage the LDN for the system is created ac-

A form of control dependence in a concurrent logic pro- cording to the algorithm by Zhaet al, as presented in Sec-
gram occurs when clauses share the same head literal. Thion 3. When matching literals in different parts of the pro-
is calledselective control dependenize[13]. Its definition ~ grams, AgentSpeak notations such-&s“-’, *!’, and *?’
uses the CFN to determine whether two literals are directly should be considered as part of the predicate symbol. The
selective-control dependent. Two vertices can be diso  only extra care to be taken in such matching is thiagan
rectly data dependenZhaoet al. use the DUN to define  the body of a plan matchest g in the triggering events of
a data-dependence relation between liter@igchronisa-  plans.
tion in concurrent logic programs relates to two types of  Initially, an LDN is created for each individual
dependences in logic programs in general: dependences beAgentSpeak program. Then the environment’s LDN is cre-
tween the guard (or the head literal if the guard is empty) ated and connected to the various agents’ LDNSs as follows:

(c) Procedure fop

Figure 2. CFN Generation Rules [13].




1. In the environment specification, for each rule, edges

the previous stagd_DN); and the property for which one

are added from the left-hand side to each perceptintends to later model checR(opert y).

change in the right-hand side.

plan bodies (of all agents) to the left-hand side of the
environment rules. (In the case of environment rules
with empty left-hand sides, we have to create links
from all actions to that rule, as these belief changes
can happen at any time.)

. For each percept change within the environment’s ini-
tial facts, or in the right-hand side of environment
rules, create edges from it to all matching triggering
events in the plans of all agents.

In order to make the algorithm shown in the next stage
clearer, we introduce the following terminology for the
nodes of the LDN created for the individual AgentSpeak
codes. We call a-node any node of the LDN that was cre-
ated for the triggering evehbof a plan, ac-node any node
created from literals in the context of the plan, dadode
any node created from body literals.

An example system and its corresponding LDN is shown
in Figure 3. In the figure, most plan contexts (i.e., guards)
are omitted for the sake of clarity.

¢/ Environment -

O b-node
<:> context
O environment

Figure 3. An Abstract Example.

Stage Il Once the LDN is created, plans are marked ac-
cording to Algorithm 1. It takes as input the system code
(Syst em, i.e., a set of AgentSpeak agent progra#nand

the Environmentrepresentatior; the LDN generated in

1 Recall that a plan’s triggering event is equivalent to teacof a

Guarded Horn Clause, and a plan’s context to the guard ofithise.

. Create edges from matching action predicates in the

Algorithm 1 Marking plans giversyst em LDN, Pr operty
(Stage Il of the AgentSpeak Slicing Algorithm).

for all subformulaf of Pr oper ty with Bel, Des, Int, or Does
modalities or an AgentSpeak atomic formdia
for all agentag in theSyst emdo
for all planp in agentag do
let te be the node of the DN
that represents the triggering eventpof
if f = (Belag b)then
for all b-nodeb; labelled+b or —b in ag’s plans, or in the
facts and right-hand side of rules in teavironmenido
if b; is reachable fronte in LDNthen
markp
if f = (Des ag g) then
for all b-nodeg; labelled!g in ag’s plansdo
if g; is reachable fronte in LDN then
markp
if f = (Intag g) then {notet-node below, rather tharnode:
for all t-nodeg; labelled!g in ag’s plansdo
if g; is reachable fronte in LDN then
markp
if f = (Does ag a) then
for all b-nodea; labelleda in ag’s plansdo
if a; is reachable fronte in LDNthen
markp
if fis an AgentSpeak atomic formuta
not in the scope of the modalities above
{meaningp is true of theEnvironmen} then
for all nodeb; labelled+b or —b in the facts and
right-hand side of rules in thEnvironmentdo
if b; is reachable fronte in LDN then
markp

Stage Il At this stage, a “slice” of the system is ob-
tained by simply deleting all plans that were never marked
throughout the execution of the algorithm in Stage II. If it
happens that all plans of an agent are deleted, then the whole
agent can be safely removed from the system, as that agent
will have no effect on whether the overall system satisfies
the given property.

4.1. An Abstract Example

For the example shown in Figure 3, aRdoperty
& (Des agl g2), all plans are marked after checking for
reachability from each of the nodes representing the trig-
gering events of all plans to the only instance gk in the
bodies ofagl’s plans. As all plans are marked, this means
that for this particular set of programs and given property,
slicing would not eliminatenypart of the original code.

Now consider that same system except that the body
of ag2’s last plan is changed fromal to a3. With
this changed system, and the sarfeoperty
& (Des agl g2), the plans that are marked after checking
reachability from each of the nodes representing the trig-
gering events of all plans to the only instance! @2 in
the body ofagl’s plans are as follows: only the plans with



triggering events-b1 and+! g1 remain foragl1, and only happen if, and only if, it is marked by Algorithm 1 when-
plan +b2 remains forag2 (plans are referred to by their ever(Bel ag b) is a subformula of property.

triggering events, which is this particular example is unam
biguous). Model checking for the property can be done on
this particular slice of the system. While it may be counter-
intuitive that a plan for+! g2 is left out of the slice even
thoughg?2 appears in the property, this is correct accord-
ing to the interpretation we have given to thes modality.

By that definition, in order for an agent to desireno plan

for that goal is required; havingas an achievement goal in
the body of any plan is all that is necessary §oto (pos-
sibly) become desired. Fgrto be intended rather than de-
sired, then a plan for it is indeed required (in practice, an
applicable plan). So, althougj? (with Des) appears in the
property, the only plan for it (i.e., havingR in its trigger-

ing event) is left out of the system’s slice that is generated
when that property is used as slicing criterion.

Proof (Sketch) The proof uses the inference rules that de-
fine the transition relation within the operational semesnti
of AgentSpeak, and the assumptions about an agent’s be-
lief revision process, to show that indeed only cases (i) and
(i) make such formulee true, and that these cases happen
precisely at points in the program represented by nodes
in Algorithm 1, to which reachability is checked from each
plan’s triggering event (the head of the plan, which conmect
the remainder of the plan in the graph). Then, assuming
the LDN generation algorithm is correct, all plans that can
lead the program to such control points, or affect the val-
ues bound to variables used in such parts of the programs,
have paths in the LDN to those nodgs hence are reach-
able and marked in the loop at line 6 of the algorithm(J

We omit the remaining four lemmas, for subformulee
with Des, Int, and Does modalities, and AgentSpeak
atomic formulae (used to refer to facts about the environ-

In this section we provide the main ideas that are to be useoment)’ asdtheybh?v;a S'”?".ar epunc:atlo?s (exc;pa)lt tha; case
in proving correctness results for our slicing algorithme W (if), regarding belief revision, is only relevant &el) an

first make clear what we mean by correctness of the slicing proofs, with referenc_e to _the particular re_achability prob
algorithm, in the following definition. Recall that, in oyp-a lem and the appropriate lines of the algorithm. From this,

proach, a system is given by set of AgentSpeak agésts we may prove the correctness of the whole slicing algorithm
uated in an environmerit; the slicing algorithm takesl, 25 follows.

E and a property” as parameters and returd$, a setof  Theorem 1 (Slicing Algorithm Correctness) The slicing

4.2. Correctness Outline

AgentSpeak programs that are sliced down frdm algorithm for AgentSpeak introduced in this paper is cor-
Definition 1 (Slicing Algorithm Correctness) A slic-  "€ctin the sense of Definition 1.

ing algorithm for AgentSpealk is correct if for any  proof (Sketch) By structural induction on thesff of the
finite set of AgentSpeak programd abstract environ-  |qgic used to write the specifications, using the five lemmas
mentE, and propertyP, for A’ suchthat (4, E, P) = A",  that refer to the base cases. 0

A E = PifandonlyifA’ E |= P.

The proof that our algorithm is correct as per the defini- 5. Autonomous Mars Rover: A Case Study on
tion above is based on five lemmas, one for each of the ba-  |ntra-Agent Plan Slicing
sic cases of formulae of our property specification language.
In the lemmas, we ignore the consequences of inter-agentrhe development of autonomous rovers for planet explo-
communicatiofin the interpretation of AgentSpeak agents; ration is an important aim of the research on “remote
that is, beliefs are only changed from perception of the en-agents” carried out at space agencies [6]. We illustrate our
vironment, and goals derive from such changes (rather thanglicing technique with an abstract version of a Mars explo-
e.g., requests from other agents). ration scenario, characterising a typical day of activity o
Lemma 1 (Belief subformula) Formula (Bel ag b), with rovers such as Sojourner (in Fhe Mars Pathfir_nder missio_n).
its definition given in [3], can only become true in regard to The ideas used here for creating such scenario were mainly
an AgentSpeak ageay under two circumstances: (i) when  t@ken from [11] (and to a lesser extent from [1]).
+b appears in the body of one of the agent's plans, or (i) A Martian day is called “sol” and the instructions sent to
by belief revision from the agent’s perception of the envi- the rover_and collgcted data transmitted from it are reabrde
ronment. Any plan in the system can make either (i) or (ii) PY d&y since landing on the planet. Thus, “sol 22" refers to
the 22nd day of activity of the rover on Mars. The scenario
described here is inspired by the description given in [11]

2 Note that we can assume there is no communication betwesrisag

without loss of generality. The abstract specification @ émviron- of a sequence of instructions sent to Sojourner on sol 22:
ment can be used to model beliefs that are changed by thetmxecu 3
of “special” actions representing the effects of interstgeommuni- 1. Back up to the rock named Soufflé;

cation. 2. Place the arm with the spectrometer on the rock;



3. Do extensive measurements on the rock surface; length of computations of individual intentions; note how-
4. Perform a long traverse to another rock. ever that automata-theoretic model checking already avoid

In this particular sol operation, it turned out that the rove €XPanding system states that are not necessary for finding a

did not position itself correctly to approach the rock wiiet ~ counter-example, which is a different situation.
spectrometer arm. The misplaced spectrometer meant that Be€Sides removing details of intermediate intention pro-

no useful data was collected, and that particular rock could ©€SSing that are unnecessary for checking a certain prop-
not be visited again, hence a science opportunity was lost €%, Yet another source of state space reduction can hap-

This is an example mentioned in that paper where more flex-P€n by slicing AgentSpeak(L) programs. Whenever all the
ibility in the exploration rover control software is reqei. plans that are gsed to handle particular external events can
That paper also describes a more flexible approach toP€ removed, this greatly reduces the state space, given that
sending instructions to a rover. This is not included heue, bt @ny point during the computation associated with one in-
we took that description into account when modelling our t€ntion, there are reachable states in which other intesitio
application. They also mention that the rover is instructed (Other focuses of attention) are created to handle eveats th

to be especially attentive to “green patches” on rocks. This May have been generated by belief revision. Slicing out
is likely to be an interesting science opportunity and so the such plans eliminates all such branches of the computation

rover should always give priority to examining such rocks tree. An alternative reduction Wou_ld be tq avoid the envi_—
if they turn up in its way to another target. Also, the batter- "onNment to generate such events in the first place (consid-
ies installed in the rover only work when there is sunlight, €""9 that they will not affect the property being verified
so all science activities are restricted by the amount of en-2NYWay). Because the environment code is not usually in
ergy stored during the day. The rover must make sure allAgentSpeak(L), butis provided by the user, automatic slic-

collected data is transmitted back to earth before it ruris ou N9 iS l€ss practical in this way. The user would have to re-
of energy. Thus, other activities should be interrupteditc ~ MOVe, from its own code, the generation of the events that
rying them out will mean the rover will not have enough en- the algorithm would determine as safe to slice out.

ergy to downlink collected data back to Earth. We next show two examples of specifications that have

Although we tried, in the AgentSpeak agent we devel- been verified for the implemented system. In the specifi-
oped for this application, to account for a greater flexibil- cations,amr is used to denote the agent (tagtonomous

ity for exploration rovers (as aimed in [11]) in aspects such Mars rove). An example of the first type of state-space re-
as making sure the rover is correctly positioned before ac-duction (reducing the path length of the computation associ
tivating the spectrometer, note that we here describe an ab&!€d With a particular intention), is as follows. Suppose th

stract scenario based on general ideas of what goes on witR9€nt's original plan library did not include pland—r 4
a rover in one day of operation. Planning for such remote (the ones which allow the rover to react to possible alter-

agents is a lot more complicated, as resources (computanative targets, sundown, etc.). This would mean the agent

tional or otherwise) that can be used in an actual rover areWould not, in any case, have more than a single intention

greatly restricted for technological and financial reasons 8t @ time. Still, consider that the following property is ® b
The AgentSpeak code for this simplified Mars rover has checked (thus being our slicing criterion):

25 plans. It is interesting to note how adequate the con- O((Does amr pl ace.spectroneter armat (R)) — 1)

structs of agent-oriented programming based on BDI no- (Belamr correctlypositioned.to.exam ne(R)))

tions are for describing some of the activities of remote yhich means that whenever the rover performs the action of
agents such as the one discussed here. Thus, that code [§acing its spectrometer arm at a certain rock, it believes t
an interesting example on which to apply our slicing tech- pe tself correctly positioned to examine that rock.
nique, as described next. _ o _ Because plans1-c4 (the ones used for the agent to
Intuitively, there are two ways in which slicing partic-  transmit back to the ground team all data it has gathered)
ularly alleviates the state explosion of AgentSpeak pro- can only become intended after some point in the execution
grams. The first one is by removing plans that cannot af- wherepl ace_spect r onet er .ar mat (R) has already
fect the truth or otherwise of the formula in the slicing erit happened, there is no need to consider that part of the exe-
rion, but would increase the length of a computation for an - tion of the intention as it will not affect the property @rd
agent to handle particular events before the truth propertyconsideration (i.e., that level of detail of the intentioee
can be determined. This is similar to the motivation for re- - tion is irrelevant for the given property). The generated

moving clauses in traditional logic programs. It reduces th  gjice for the above property does not include plafisc4.
o _ An example of the second type of state space reduction
3 Because of space limitation, we cannot include any of thentgpeak th hich ids th ti f other f f
code used for the rover here. However, we have made it alaitab ( € one which avolds the generation or other Tocuses o

the Web atht t p: / / www. dur ham ac. uk/ r. bor di ni / attention that would not interfere with the property being
Publ i cati ons/ PubApp/ AAVAS04- CR/ ant . asl . checked) is:




O((Intamr transnit_al | remai ni ngdata(22)) —
O—((Bel amr dat a( specDat a, souf fl e, 22, ) )A
—(Bel amr downl i nk( gr ound, specDat a, souffl e, 22))))

@

which means that in any execution path, whenever the rover
intends to transmit all remaining data back to Earth, some
time after that there will be no data entry in its belief base
for which there is not an associated belief saying that that
particular piece of information has already been downiihke
back to the ground team (this ensure, e.g., that the rover
does not run out of batteries before it finishes the impor-
tant task of transmitting all gathered data).

With the above slicing criterion, plan3 (a plan for re-
acting to possible ordinary targets; there is a separate one
for reacting to rocks with green patches) can be safely re-
moved. Note that although the slicing appears to be “small”

(i.e., just one plan is removed), a considerable reduction [4

of the state space can ensue, depending also on how dy-
namic the environment is. If many possible targets are de-
tected (and approached) during the time data is being trans-
mitted back to Earth, this could generate a large number of
different system states in which the two focuses of atten-
tions are being dealt with simultaneously by the rover.
Experiments were run on a machine with an MP 2000+
(1666 MHz) processor with 256K cache and 2GB of RAM
(266 MHz). For specification (1), SPIN us&f6MB of
memory (.18 x 10% states in the system) and to8ks
to complete model checking. After slicing, numbers went
down to407MB (945, 165 states) an@d4s. This means a re-
duction of 25.6% on the time to model check, and a 33%
reduction in memory usage. For specification (2), SPIN
used 938MB of memory Q.87 x 10° states), and took
218s to complete. After slicing, this went down Td6MB
(2.12 x 10° states) and62s. This means a reduction of
about 26% on the time to model check, and 21% on mem-
ory usage. Interestingly, using SPIN’s built-in slicinged
rithm does not reduce the state space at all.

6. Conclusions

[10]

We have presented a new algorithm for property-based slic-
ing specifically targeted at AgentSpeak programs. Given a
set of AgentSpeak programs forming a multi-agent system,
we are now able to derive a second set of programs that has

a smaller state space, yet is equivalent to the original onell

with respect to the property under consideration. This work

forms part of our ongoing programme on the verification of [13]

multi-agent systems. Initial experimental results shoiga s
nificant reduction in the state space, thus indicating thiat t
approach can have an important impact on the practicality

of automatic agent verification. An automatic AgentSpeak [1

slicer based on this work is still being implemented, but ini
tial complexity analysis shows there should not be an issue
with the slicing time prior to model checking.

(1]

(2]

(3]

(5]

(6]
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